JURNAL: PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS

JURNAL: PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS

JURNAL: PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS


Abstrak

Makalah ini membahas pengelompokan mahasiswa berdasarkan data akademik menggunakan teknik clustering dan membuat aplikasinya kemudian menganalisis hasilnya sehingga diharapkan mampu memberikan informasi bagi yang berkepentingan. Algoritma K-Means merupakan salah satu algoritma teknik clustering yang dimulai dengan pemilihan secara acak K, yang merupakan banyaknya cluster yang ingin dibentuk dari data yang akan di kluster, yaitu nilai tes mahasiswa saat masuk dan Indeks Prestasi Komulatif mahasiswa sampai semester 8. Sistem yang dibuat menampilkan hasil klustering data akademik mahasiswa, yaitu pola dari prestasi mahasiswa yang klusternya tetap, turun dan naik, dan dapat terlihat dari asal program studi, asal kota dan asal SMA. Dari hasil studi kasus dapat diperoleh informasi mahasiswa yang tetap pada kluster seperti awal masuk sebanyak 422 (45, 085%), mahasiswa yang naik kluster sebanyak 284 (30,342%) dan mahasiswa yang turun klusternya sebanyak 230 (24,573%), 

Kata kunci: teknik clustering, Algoritma K-Means

Pendahuluan 

Seleksi masuknya mahasiswa dalam sebuah perguruan tinggi umumnya dengan memberikan soal-soal test yang harus mereka kerjakan, untuk mengetahui kemampuan dan pengetahuan mereka. Setelah mahasiswa mengalami proses belajar mengajar, maka akan dapat diketahui prestasi mereka setiap akhir semester. Hal ini akan terjadi secara berulang pada sebuah perguruan tinggi. Jumlah data yang banyak ini membuka peluang untuk dihasilkan informasi yang berguna bagi pihak universitas. 

Peneliti: Narwati

Untuk lebih lengkapnya silahkan download di link berikut:
JURNAL: PENGELOMPOKAN MAHASISWA MENGGUNAKAN ALGORITMA K-MEANS