Abstract
Frequent patterns (itemsets) discovery is an important problem in associative classification rule mining. Differents approaches have been proposed such as the Apriori-like, Frequent Pattern (FP)-growth, and Transaction Data Location (Tid)- list Intersection algorithm. This paper focuses on surveying and comparing the state of the art associative classification techniques with regards to the rule generation phase of associative classification algorithms. This phase includes frequent itemsets discovery and rules mining/extracting methods to generate the set of class association rules (CARs). There are some techniques proposed to improve the rule generation method. A technique by utilizing the concepts of discriminative power of itemsets can reduce the size of frequent itemset. It can prune the useless frequent itemsets. The closed frequent itemset concept can be utilized to compress the rules to be compact rules. This technique may reduce the size of generated rules. Other technique is in determining the support threshold value of the itemset. Specifying not single but multiple support threshold values with regard to the class label frequencies can give more appropriate support threshold value. This technique may generate more accurate rules. Alternative technique to generate rule is utilizing the vertical layout to represent dataset. This method is very effective because it only needs one scan over dataset, compare with other techniques that need multiple scan over dataset. However, one problem with these approaches is that the initial set of tid-lists may be too large to fit into main memory. It requires more sophisticated techniques to compress the tid-lists.
Kata Kunci: frequent itemset, CAR, apriori,FP-growth, tid-list, associative classification
Pendahuluan
Associative classification (AC) adalah cabang dalam data mining yang memanfaatkan metode association rule discovery dalam masalah klasifikasi. Beberapa studi memberikan bukti bahwa teknik AC dapat memberikan model klasifikasi yang lebih akurat dibandingkan dengan teknik-teknik klasifikasi tradisional seperti decision tree, rule induction, dan pendekatan probalistik [12].
Peneliti: E. Karyawati dan E. Winarko
Untuk lebih lengkapnya silahkan download di link berikut:
Post a Comment
Post a Comment