JURNAL : IMPROVISASI BACKPROPAGATION MENGGUNAKAN PENERAPAN ADAPTIVE LEARNING RATE DAN PARALLEL TRAINING

JURNAL : IMPROVISASI BACKPROPAGATION MENGGUNAKAN PENERAPAN ADAPTIVE LEARNING RATE DAN PARALLEL TRAINING

JURNAL : IMPROVISASI BACKPROPAGATION MENGGUNAKAN PENERAPAN ADAPTIVE LEARNING RATE DAN PARALLEL TRAINING
Abstract
Artificial neural networks have long been used in the classification process, which offers the flexibility of neural networks to the features of the object to be classified and small storage space. The biggest drawback of the backpropagation network is the time taken by the network to learn to be very long for large data conditions of learning and the conditions in which the features between different objects have small differences. To overcome the weaknesses of the implementation of the development is carried out by applying the concept of parallel adaptvie learning rate and training in order to improve the ability of the network in the learning process.
Keyword : Character Identification, Classification, Artificial Neural Network, Backpropagation, Adaptive Learning Rate, Parallel Training.

PENDAHULUAN
BackPropagation merupakan metode yang sangat baik dalam proses klasifikasi mengingat kemampuannya dalam mengadaptasikan kondisi jaringan dengan data yang diberikan dengan proses pembelajaran. BackPropagation merupakan metode yang sangat baik dalam proses klasifikasi mengingat kemampuannya dalam mengadaptasikan kondisi jaringan dengan data yang diberikan dengan proses pembelajaran.

DOWNLOAD JURNAL